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CycleGAN: Unpaired Domain Translation

Allows translating

(mapping) between
image domains

Requires only B =t 0
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unpaired data horse — zebra
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Can we |learn a CycleGAN between the 2D and
3D object modalities in the same way?

Shape-to-Image
Generation

‘ﬂ (Graphics problem)
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Image-to-Shape
Inference

(Vision problem)




Motivation

2D-3D paired data is hard and/or costly to obtain

From: Pix3D




Motivation

But we do have large separate (unpaired) 3D model datasets and 2D
image datasets

Unannotated masked images

Untextured 3D shapes
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This is sufficient to train our cycle-consistent model




Goal

Learn a 2D-3D modality translator with:
- No paired data requirement

- A generative model of paired data
- Weakly supervised textured 3D mesh inference

Shape-to-Image Generation (2D — 3D) Image-to-Shape Inference 2D — 3D)
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Methods: 2D-3D Modality CycleGAN

3D shape to 2D image
P 8 3D “Graphics Code”
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Learn a bidirectional, ~invertible mapping from graphics code to 2D
rendered image



Methods: Shape-to-Image Translation

L P Scene-Space
atent Pose fp Rigid Pose fE Shapgn ME
gﬂl) iEJ ‘ > e MNTONN
Latent - Generateg
In';put ghape Shape Canonical Shape M o 2

Wy L%
My, '“%'b
) .
0

KRNI SR RS~ R

<HOo

Latent Texture

~, O [ > ‘ > === \P
&A) fr n Sample E}N%rde

Learned graphics pipeline: generate image from 3D specifications
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Methods: Image-to-Shape Translation
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Vision as inverse graphics: infer 3D scene parameters from 2D image




Methods: 2D-3D CycleGAN Training Architecture

Cycle Consistency (Graphics)
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Cycle Consistency (Vision)
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Methods: Loss Objective

Two main terms per cycle: distribution-matching and cycle-consistency

Distribution-matching losses

Generated images I and inferred shapes S should be in-c
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Reconstructed images I and shapes S should equal each cycle’s input



Results: Image-to-Shape Translation

Real Input Reconstructions Real Input Reconstructions
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Img2shape translation learns 3D reconstruction




Results: Image-to-Shape Translation

Real Input Reconstructions Real Input Reconstructions
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Img2shape translation learns 3D reconstruction




Results: Shape-to-Image Translation
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Shape2lmg translation learns generative image modelling



Results: Shape-to-Image Translation
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Shape2lmg translation learns generative image modelling
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Results: Unsupervised Aligned Correspondence
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Template vertices naturally correspond across instances (due to the
canonical space) and can be treated as unsupervised keypoints
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Results: Latent Representation Learning
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Changing Texture
Enables smooth and disentangled control of shape, pose, and texture
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Conclusion

We have shown one can learn

_ Shape-to-Image
a 2D-3D modality translator

Generation
from unpaired data, capable
of 3D reconstruction and fS_>]
generative image modelling.
Still limitations with fine
details (shape+texture), f]_>g

topology, lighting, and
background. Image-to-Shape
Inference
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Thank you for listening



