Cycle-Consistent Generative Rendering for 2D-3D Modality Translation
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Methods

Motivation

Shape-to-image translation
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Inspired by CycleGAN, can we learn a modality
translation model between 2D to 3D?
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Shape-to-Image Translation
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Unproject

Cross-modality object fidelity (cycle consistency)

Goal: Learn a bidirectional mapping between
the 2D and 3D modalities of objects
from unpaired data.

Results

Shape-to-image translation learns generative modelling Learned representation disentangles pose, shape, and texture
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Our 3D shape representation is a graphics code,
consisting of a rigid pose, a deformable
mesh, and a 3D texture.

 Occluded parts under-constrained
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